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Abstract 33 

In this work we cross-correlated waveforms in a global dataset consisting of over 34 

310 million waveforms from nearly 3.8 million events recorded between 1970 and 35 

2013 for two purposes: to better understand the nature of global seismicity and to 36 

evaluate correlation as a technique for automated event processing.  We found that 37 

about 14.5% of the events for which we have at least one waveform correlated with 38 

at least one other event at the 0.6 or higher level. Within the geographic regions 39 

where our waveform holdings are complete or nearly complete, that fraction rose to 40 

nearly 18%. Moreover, among the events for which we had one or more 41 

seismograms recorded at distances less than 12 degrees, the fraction of correlated 42 

events was much higher, often exceeding 50%.  43 

These results imply that global seismicity contains a large number of “repeating” 44 

events, that is, events which are sufficiently similar to each other to have correlated 45 

waveforms over the time period spanned by our dataset.  These results are very 46 

encouraging for using correlation in aspects of automated event processing.  It is 47 

well known that because of the strongly implied similarity of the sources of 48 

correlated signals, they can be used as empirical signal detectors (ESD), to detect, 49 

locate and identify an event using as few as one channel.   Our results are very 50 

encouraging for using correlation and perhaps other forms of ESD for regional 51 

network processing and continental global processing since, for example, nearly all 52 

continental seismicity (99%) is within 12 degrees of at least one International 53 

Monitoring System station.  54 

 55 
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Introduction 56 

It has long been known that seismic events can produce seismograms with strong 57 

similarity to previously recorded events.  Quantitatively this characteristic of 58 

seismicity is often measured through waveform correlation. High correlation values 59 

between seismograms from different events imply these events have similar 60 

locations, mechanisms and other properties.  Strong seismogram correlation, when 61 

it occurs, can thus be extremely useful in seismic event processing, as well as 62 

shedding light on seismic properties such as slip recurrence rates on fault patches.   63 

In this paper we attempt to better quantify how much of the Earth’s seismicity is 64 

correlated and how such correlation is distributed in space and time.   65 

Since at least the 1960’s it has been known that correlation can be used as the basis 66 

for highly sensitive detectors (e.g. Anstey, 1966; Van Trees, 1968). The literature has 67 

many examples of correlation detectors applied to tightly clustered seismicity 68 

observed at local to near-regional distances; e.g. (Israelsson, 1990, Harris, 1991, 69 

Gibbons and Ringdal, 2004, 2005) to name a few. Using array-based correlation 70 

detectors, Gibbons and Ringdal (2006) demonstrated an order of magnitude 71 

reduction in the detection threshold relative to incoherent detection on a beam. 72 

These uses of correlation are so well established that at the U.S. National Data 73 

Center (USNDC), correlation detectors are routinely used for repeating sources 74 

(Junek et al., 2013). Here we treat correlation as one type of Empirical Signal 75 

Detector (ESD), a term coined by Junek et al., 2013 to refer collectively to pattern 76 

matching detectors such as correlators, subspace detectors (e.g. Harris, 2006), and 77 

matched field detectors (e.g. Harris and Kvaerna, 2010).  78 
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 79 

Correlation detectors have also been applied with some success to earthquake 80 

aftershock sequences. Large earthquake sequences are a problem for monitoring 81 

agencies because the high rate of activity can make it difficult for analysts to keep up 82 

with processing deadlines. This is due to the sheer volume of events to be processed 83 

and to the numerous false associations produced by current automated systems 84 

under conditions of high seismicity. If it is common for a significant fraction of 85 

events to be correlated, then a seismic signal processing pipeline suitably designed 86 

to use correlators to pre-group detections and prevent many false associations 87 

could far out-perform current systems during large aftershock sequences. 88 

 89 

Harris and Dodge (2011) have used correlation in combination with subspace 90 

detectors in an automated system to track events in an aftershock sequence. They 91 

demonstrated a potential analyst workload reduction of up to 73%.  Slinkard et al., 92 

(2013) applied correlation detectors to three aftershock sequences using stations 93 

from 27 to 900 km distant. They found that the percentage of bulletin events 94 

detected by correlators ranged from 30% to 92%. These examples are encouraging, 95 

but because of their local scope, cannot definitively demonstrate the potential 96 

effectiveness of correlators in a global pipeline.. 97 

 98 

Correlation detectors have also been shown to be effective over much larger 99 

regions. For example Schaff and Richards (2004, 2011) discovered that about 13% 100 

of 18,000 earthquakes in China were correlated at the CC = 0.8 level or above. At 101 
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lower correlation thresholds suitable for detection (but maybe not for location) 102 

purposes, Schaff (2009) found that two thirds of the 18,000 events were correlated. 103 

At local distances over all of northern California, Schaff and Waldhauser (2005) 104 

found that 95% of events correlate with at least one other at 4 or more stations. We 105 

find that the global average of correlated seismicity is about 18% and at short 106 

distances can rise to 50% or more.  Furthermore, there is potential for higher-rank 107 

subspace detectors to improve considerably on the detection rates of pure 108 

correlators. Automated processing of 18% of world seismicity would be a significant 109 

reduction in analyst workload and the percentage of events detected by ESD is 110 

expected to grow over time. Also, a suitably designed system could mask or cancel 111 

the signals associated with all its detections. This could considerably ease the 112 

workload on the associator at times of high seismicity, resulting in fewer false 113 

associations. For these reasons it seems worthwhile to consider the use of 114 

correlators or more advanced empirical signal detectors as part of future global 115 

pipeline systems.  116 

 117 

The present computational costs appear to be high, relative to current practice in 118 

seismology, but not by the standards of “Big Data” practitioners. For example, all 119 

channels of the IMS seismic sensors produce only a few tens of gigabytes of data per 120 

day. By comparison, in 2013 the Facebook data warehouse took in 500 terabytes 121 

per day (Miners, 2013). Implementing a system on that scale would be expensive 122 

today. However, the strong competition among vendors virtually assures that a 123 
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system designed in a few years will be able to take advantage of commodity 124 

solutions with more than enough storage and processing power. 125 

 126 

In a future paper we will examine some of the hardware and software issues 127 

involved in scaling correlation detection to an operational capability in a global 128 

pipeline.  In this paper we describe how effective correlation is expected to be; e.g. 129 

can we better quantify how much of the Earth’s seismicity is correlated and how it is 130 

distributed in space, time and with what event characteristics. In this paper we 131 

attempt to answer these questions by cross correlating a large, globally distributed 132 

set of seismograms and analyzing the statistics of the resulting set of correlations.  133 

Global seismogram correlation is a very large problem and the results presented 134 

here should be considered an initial exploration of the massive results produced. 135 

 136 

The Dataset 137 

Lawrence Livermore National Laboratory (LLNL) operates a database of seismic 138 

events and waveforms for research on nuclear explosion monitoring and other 139 

applications. The waveforms are digital time series of ground motion recorded by 140 

seismometers installed at seismic stations. Typically, the seismometers produce 141 

output on multiple channels corresponding to different orientations and pass bands, 142 

so that often the same events are recorded on multiple channels at each station.  143 

 144 

 The LLNL database contains nearly 3.8 million events associated with more than 145 

310 million waveforms at nearly 6,300 stations (Figure 1). The events are compiled 146 
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into a reconciled list from tens of individual bulletins produced by seismological 147 

organizations around the world (e.g. USGS, CTBTO, ISC, numerous regional and local 148 

network operators).  The waveforms come from the same sources and especially 149 

data collection centers such as the Incorporated Research Institutions in Seismology 150 

(IRIS) Data Management Center (DMC).  The figure (a) shows the completeness of 151 

waveform holdings geographically. The figure was produced by gridding the Earth’s 152 

surface into 50km by 50km cells and, within each cell, dividing the number of events 153 

for which we have at least one seismogram by the total number of events in our 154 

reconciled composite global catalog for that cell. The color scale indicates the 155 

completeness; with black indicating no waveforms and white indicating that for 156 

every event in the cell we have at least one waveform.  Although the data set has 157 

global coverage, the completeness is highest in the Middle East, Eurasia, and 158 

Western North America. Many of the conclusions reached in this work are based on 159 

analysis of data from the regions where our coverage is 80% or greater. By 160 

restricting our analysis to this subset of the data we hope to minimize biases 161 

resulting from uneven distribution of waveforms in the database. The waveforms in 162 

the LLNL database span a period of time greater than 60 years (b), but the earliest 163 

data are for stations and channels not found later. In fact, the effective time period 164 

for correlation processing is about from 1970 to the present (c). 165 

 166 

Procedure 167 

In order to investigate the correlation behavior of seismic signals over a wide range 168 

of seismic wave types and frequencies we correlated catalog events in 8 seismic 169 
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phase windows (e.g. P, S), as well as in 15 frequency bands for each window. The 170 

bands and windows used are detailed in Tables 1 and 2. For each station-event-171 

phase, we checked first for the existence of the phase in the AK135 travel tables. For 172 

each viable phase we chose only those bands for which there would be at least ten 173 

cycles within the nominal window length (using the band upper frequency limit). 174 

Also, to avoid duplicates when multiple branches of P- or S- existed, only a single 175 

branch was used. The windows were then arranged in time-order and trimmed as 176 

necessary to prevent overlaps. For each station-event we also processed a “whole 177 

waveform” window that extended from a few seconds before the first P to the 178 

minimum of 2000 seconds or the epicentral distance in km divided by 3.  179 

 180 

Correlations are performed for data recorded on a common station and channel 181 

(STA-CHAN hereafter). It is impractical and unnecessary to calculate correlations for 182 

all possible event pairings per STA-CHAN. For our data set this would have required 183 

the calculation of over 1015 cross correlations. Rather, it is sufficient to calculate 184 

cross correlations only for those event pairs that we know to be close enough 185 

spatially that they might produce correlated seismograms. From preliminary studies 186 

we determined that it was rare for two events with correlated seismograms to have 187 

relative mislocations of more than 50 km so we chose that distance as a search 188 

radius.  Although restricting the calculation of correlations only to nearby events 189 

dramatically reduces the number of correlations which must be calculated, with 3.8 190 

million events to compare it is very important to have an efficient strategy for 191 

finding nearest neighbors. We employed a Java Spatial Index, which is the Source 192 
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Forge implementation of an R-Tree (Guttman, 1984).  For each STA-CHAN we 193 

retrieve all events recorded by that STA-CHAN, and use the R-Tree to build  ‘islands’ 194 

of events within 50 km of one-another and process all pair-wise combinations in the 195 

island.   196 

 197 

Processing of an island is shown schematically in Figure 2.  An arbitrary event is 198 

chosen as the starting point and the R-Tree is used to find all neighbors within 50 199 

km. After measuring correlations with those neighbors, the event is removed from 200 

this list and the processing is repeated with one of its neighbors. Eventually an event 201 

with no neighbors is found, and the island is completely processed. The processing 202 

of an event pair within an island is shown schematically in Figure 3. The waveforms 203 

are retrieved (as required) and the possible windows and bands are identified. For 204 

each phase and band, the seismograms are filtered and trimmed, and a signal-to-205 

noise ratio (SNR) test is performed on each window. If both windows pass the test, 206 

they are correlated and if the correlation meets or exceeds 0.6, the results are 207 

written to the database correlated event list. Memory and processing time 208 

prevented us from writing out every correlation result, and 0.6 was chosen as an 209 

interesting threshold to examine. In planned future processing using Hadoop 210 

described below, we expect to be able to examine a broader suite of correlation 211 

thresholds. 212 

 213 

In developing and optimizing the algorithm discussed above, we processed several 214 

subsets of the global dataset. Examination of the results revealed many instances of 215 
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correlated noise or signal artifacts. In an attempt to alleviate these problems, we 216 

tried introducing screening rules into the segment processing code. Although this 217 

achieving partial success in avoiding unwanted correlations, we decided that a more 218 

time-efficient approach was to perform the correlations without screening, and 219 

remove the invalid correlations after processing was complete. By deferring the 220 

screening, we were able to take advantage of the weeks of processing time to 221 

develop an effective algorithm. This post-processing step is discussed in detail in a 222 

later paragraph. 223 

 224 

In all over 650 million correlations were written in about 42 days on a configuration 225 

consisting of 4 servers with 44 cores and 613 gigabytes of RAM. In addition to the 226 

correlations that were written to the database, about 700 million correlations were 227 

computed but rejected. SNR tests removed nearly 135 million windows from 228 

processing before a correlation was computed. There were nearly 678 million cases 229 

where a band was skipped because the sample rate was too low or the window was 230 

too short for the band (i.e., the window failed a simple test to prevent low time-231 

bandwidth-product correlations). Subsequently, we re-implemented the correlation 232 

processing code using Hadoop (an open-source framework for processing large-233 

scale data sets using commodity clusters) and achieved a speedup of nearly a factor 234 

of 20 on a test subset of events. The Hadoop implementation will enable larger and 235 

more complete investigations into correlation behavior in the future. Details of the 236 

faster Hadoop implementation are described in detail in the Addair et al. (2014) 237 

paper. 238 
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 239 

We performed post-processing of the correlation results to remove correlations due 240 

to signal artifacts and correlated noise. A significant number of seismograms used in 241 

this study contained artifacts that correlate quite well. The data from some stations 242 

were so contaminated, that tens of millions of correlations were due to artifacts. 243 

Also, our strategy of processing each phase window in multiple bands resulted in 244 

many instances of correlated noise.  Examples are shown in Figure 4. Part (a) shows 245 

some of the most prevalent artifact types and part (b) shows an example of 246 

correlated noise for the case where an inappropriate filter band is used. 247 

 248 

We were able to achieve partial success in removing signals with artifacts by 249 

computing features sensitive to each identified artifact type, and applying a 250 

threshold test for each such feature. For example, a single-point glitch can be 251 

identified using a running median filter. However, identifying optimal thresholds for 252 

each feature and establishing a prioritization of tests proved challenging. 253 

Fortunately, this kind of classification problem is well studied in computer science 254 

and a number of off-the-shelf solutions exist. We experimented with both a Support 255 

Vector Machine (Boser et al., 1992) and a random forest classifier (Breiman, 2001). 256 

We chose to use the random forest classifier because it allows inspection of the rules 257 

used in decision making.  258 

 259 

To use the classifier, we recast our problem into two separate classification 260 

problems. In the first problem, we test our population of unfiltered signal segments 261 
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to separate valid seismograms from seismograms with non-seismic artifacts (e.g, 262 

glitches, clipping, etc.). In the second problem, the population of valid seismograms 263 

is filtered into each band used in the correlation processing, and the filtered 264 

seismogram is classified as containing a valid event seismic signal or not, based on a 265 

seismologist’s assessment. These assessments of valid seismic event data are then 266 

tied to  a set of computed features on which the classifier is trained. Table 3 lists the 267 

features that were computed for both filtered and unfiltered seismograms, and 268 

Table 4 lists additional features computed for the filtered segments. A number of the 269 

features in Table 3 were developed during our ad hoc attempts to remove artifacts. 270 

The remaining features attempt to describe the characteristics of the signal 271 

statistically. For example the time bandwidth product characterizes the information 272 

content, and is important in identifying signals that will produce correlations of low 273 

significance. Other features measure the way the energy is concentrated in time and 274 

frequency and the “peakedness” of the signal. The features in Table 4 are used to 275 

further characterize signals where much of the energy is concentrated in a relatively 276 

small part of the signal segment, such as a teleseismic P-arrival in a long window. 277 

 278 

The classifier was trained using a data set of 18,300 randomly selected and filtered 279 

segments.  Each segment was first presented to an analyst unfiltered, and was 280 

manually classified as being either valid or not. Those windows marked as valid 281 

were then filtered into one of the bands in which they were correlated and were 282 

presented again for judgment.  The classifier was trained on the largest subset of the 283 

labeled data that preserved a 1:1 good to bad ratio (~14,000 segments). 284 
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 285 

Based on 10-fold cross validation testing, the classifier achieved about 95% 286 

precision in classification. The 10-fold validation testing consisted of forming 10 287 

separate partitions of the data into training and validation sets, computing the 288 

precision for each partition, and averaging the results. After training and testing, the 289 

classifier was applied to all the segments referenced in the correlation results with 290 

the result that 371,209,733 correlations were retained as having been performed on 291 

valid signals. 292 

 293 

General Characteristics of the Correlation Results 294 

In all, 14.5% (542,405) of the 3,745,879 distinct events in our waveform table had 295 

valid correlations that met or exceeded the 0.6 acceptance threshold.  Nearly 40% of 296 

the 6,266 stations produced at least one valid correlation. Figure 5 shows the 297 

distribution of the retained correlations by phase (a) and by band (b). Most of the 298 

correlations are for the whole waveform and for the S phase. Between them they 299 

account for nearly 271 million (~73%) of the correlations.  300 

 301 

The whole-waveform window started 10 seconds before the theoretical P-wave 302 

arrival and continued to MIN (km / (3 km/sec), 2000 sec). Because most of the 303 

retained correlations were for relatively short event-station separations, the 304 

average length of the whole-waveform window was about 82 seconds.  The 305 

effectiveness of the whole-waveform window relative to shorter windows designed 306 

to extract single phases is somewhat surprising. We initially suspected that the 307 
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correlation classifier had disproportionately removed shorter windows based on 308 

time bandwidth product values. However, examination of the removed correlations 309 

showed that the whole-waveform window was most often removed, followed by the 310 

Sn and S windows. A more likely explanation for the predominance of this window 311 

in our results is that it always exists, whereas the other windows only are computed 312 

if they are predicted by the AK135 travel time calculator for the event-station pair. 313 

Furthermore, the whole-waveform window always samples the part of the 314 

seismogram with the highest SNR whereas specific phase windows often do not. 315 

 316 

The correlation results also are predominantly short period. Figure 5(b) shows the 317 

number of correlations as a function of filter band. The 1-2 Hz band is by far the 318 

most productive band.  Most of the remaining correlations are in bands centered 319 

around or above 1 Hz. The majority of correlations were for signals recorded at local 320 

to regional distances, and at these distance ranges, (and also for teleseismic P) these 321 

are the filters one would expect to be most effective at bringing out the desired 322 

signal. Because we did not compute correlations for windows containing fewer than 323 

10 cycles of a signal at the dominant period in any given band, there are no 324 

correlations in long-period bands at local distances or for any window other than 325 

whole-waveform.  This could also contribute to most correlations being for the 326 

whole-waveform window.  327 

 328 

Figure 6 shows the correlation counts as a function of event-station separation for 329 

long-period bands (a), mid-period bands (b) and short-period bands (c). The 330 
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correlations in (a) are primarily of surface waves recorded in long windows, so 331 

except for the band (0.5 – 1.0Hz) there are no observations at very short distances. 332 

This is a side effect of our windowing strategy as discussed previously. At mid- to 333 

short-periods, the dominant feature in the plots is a drop in numbers of correlations 334 

of about 3 orders of magnitude for distances greater than 8 to 10 degrees.  From 335 

that point to about 90 degrees, the number of correlations stays relatively constant 336 

except for a bump between 35 and 51 degrees. 337 

 338 

This behavior was surprising since our expectation was that at high frequencies, 339 

attenuation of the signal (and the attendant decrease in SNR) would cause 340 

decreasing correlation values with distance. To be sure that the correlations seen at 341 

teleseismic distances were not dominated by misclassified artifacts we performed a 342 

manual inspection of a subset of the teleseismic results. Examination of 100 343 

seismogram pairs chosen randomly from the correlation results for distances of 30 344 

to 90 degrees in the mid-period and short-period bands showed that in all bands 345 

except one, every sample contained valid seismograms. Interestingly, nearly all 346 

these teleseismic data are recorded by IMS arrays.  The increase in the correlation 347 

counts between about 35 and 51 degrees is a real feature.  It turns out that a handful 348 

of arrays are situated such that several major seismic zones fall within that distance 349 

range for these arrays.  350 

 351 

Figure 7 shows the magnitude differences (left) and the distribution of time 352 

separations (right) for correlated event pairs in our results. The data are divided 353 
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into four bins based on the average magnitude of each event pair. Panel (a) shows 354 

results for Mw ≤ 2. Panel (b) shows results for 2 < Mw ≤ 4. Panel(c) shows results 355 

for 4 < Mw ≤ 6, and panel (d) shows results for 6 < Mw ≤ 8. The data were prepared 356 

by selecting all event pairs in the correlation results table for which the whole-357 

waveform correlation exceeded 0.6 in one or more high-frequency (>0.5 Hz) bands. 358 

We are interested in understanding the detection characteristics of whole-359 

waveform, high-frequency templates, and by restricting the data used in these plots 360 

to be high-frequency-only, we hope that the resulting statistics will be more 361 

representative of that population. The repeat interval plots were produced using 362 

these data.  363 

 364 

Our first attempt at producing the magnitude difference distributions yielded 365 

histograms with surprisingly heavy tails. Examination of the outliers revealed that 366 

in nearly all cases, one or both of the events being compared had only a single 367 

magnitude estimate from a local or regional bulletin. Separately, we have found it to 368 

be common for such magnitude estimates to differ by a unit or more from 369 

magnitudes determined by global monitoring organizations. Therefore, we decided 370 

to remove all event pairs for which only a single magnitude estimate from a local or 371 

regional bulletin is available. This significantly reduced the number of event pairs, 372 

but there are still thousands in each magnitude range. The resulting magnitude 373 

difference histograms show that over the entire span of magnitudes in our database, 374 

events are likely to correlate well at frequencies greater than about 0.5 Hz only if 375 

their magnitudes differ by less than two units. 376 
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 377 

The histograms of repeat intervals were produced by binning the time differences of 378 

correlated events in the 4 different magnitude ranges. The most obvious feature of 379 

these plots is the abrupt ending just short of short of 20 years. This seems surprising 380 

since the time span of the waveform data is about 40 years. However, as Figure 8 381 

shows, the LLNL waveform data can really be thought of as two distinct sets that 382 

share only a few tens of STA-CHAN between the epochs of (1970 – 1990) and (1990 383 

– Present). At larger magnitudes, the repeat frequency decays with interval length 384 

as it must, but for Mw < 4 there is a flattening of the slope starting around 7 or 8 385 

years. This appears to be an artifact of the way we have built our research database 386 

over many years: initially disk space limits caused us to use a short distance 387 

threshold for M<4 data collection, whereas more recently we have been collecting 388 

globally without magnitude or distance thresholds. For the largest magnitude event 389 

pairs (d) there is about an order of magnitude increase in the number of repeats in 390 

the shortest-duration bin. These are almost entirely aftershocks recorded at 391 

teleseismic distances, correlated using long windows in the 1-2 Hz.  392 

 393 

We also calculated recurrence intervals for all the correlated event pairs found in 394 

this study, as well as in two different magnitude ranges, for time periods ranging 395 

from 1 day up to 10 years as shown in Table 5.  The largest numbers of events have 396 

a 1-year or greater recurrence interval. Cumulatively we find the rate starting to 397 

approach completeness at 10 years.  However as discussed in relation to Figure 8, 398 

our dataset has limited data to test very long recurrence intervals (>10 years), 399 
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because of small numbers of STA-CHAN pairs with longer operational durations. We 400 

also note a significant difference in the short time recurrence intervals; with the 401 

smaller magnitude range events have fewer short (< week) recurrence intervals 402 

than the large events. Possible explanations include the presence of significant 403 

numbers of mining and manmade repeating seismic events in the M<4 group with 404 

>1 week intervals that are absent in the large magnitude group.  In addition as 405 

discussed above, our database is more complete for the large event (M>5.5) group, 406 

since disk space limits caused us to bound the collection of M<4.5 waveforms for 407 

distances beyond regional for some years.  Finally we note the reconciled event 408 

catalog itself has a spatially variable completeness threshold that affects the 409 

statistics of the M<4 group. 410 

 411 

Prevalence and Geographic Distribution of Correlated Events 412 

The geographic distribution of correlation results as fractions of total seismicity is 413 

shown in Figure 9. To produce these plots we gridded the Earth’s surface into 50km 414 

by 50km cells, and in each cell computed the ratio of correlated events to the total 415 

number of events reported in bulletins for the time period in which we have 416 

waveforms for the cell. Because we are interested in understanding the prevalence 417 

and distribution of correlated seismicity, and because the LLNL research database 418 

waveform holdings are not complete globally, we restrict most of our analysis to the 419 

region outlined by the white dashed lines. Within this region, we have waveforms 420 

for nearly all events, and therefore believe that the patterns we see in these regions 421 

are not biased by variations in data completeness. 422 
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 423 

Panel (a) shows the distribution of correlated seismicity without any restriction by 424 

band, phase, or magnitude.  Globally, all or nearly all of the major seismogenic zones 425 

of the Earth are evident. The most striking features within our analysis region are 426 

the bright spots in Fennoscandia, central Asia, the Andaman Sea, and Iran. By 427 

contrast, the Mediterranean region shows a much lower fraction of correlated 428 

events. Some of these regions (e.g. Fennoscandia) have a large amount of mine 429 

seismicity which is known to correlate quite well (e.g. Tarvainen and Husebye, 430 

1993). Panel (b) shows the distribution of correlated seismicity for events of 431 

magnitude 5 and greater. Within the analysis region, the fraction of correlated 432 

seismicity appears to be much larger on average than the distribution in (a) with 433 

most areas having a fraction greater than about 0.4. Evidently, the bright spots seen 434 

in (a) correspond to areas that have both a high density of low magnitude events 435 

and one or more stations close enough to have high SNR recordings for those events. 436 

This interpretation is supported by panel (c), which shows the fraction of events for 437 

which we have waveforms from stations within 5 degrees of the epicenters. Most of 438 

the bright spots in (a) correspond to bright spots in (c), and the Mediterranean is 439 

seen to be a region with a relatively low density of nearby stations (in our waveform 440 

database). 441 

 442 

Evidently, correlated seismicity is not restricted geographically. But are enough 443 

events correlated to warrant making correlation detection part of routine pipeline 444 

processing? For the entire data set, about 14.5% of the events for which we have 445 



 

 20 

one or more waveforms have mutual correlations. Within the analysis region where 446 

our waveform coverage is mostly complete, the fraction increases to nearly 18% 447 

and the ratio of correlated events to events reported in bulletins is nearly as high 448 

(17%). Figure 10 shows the fraction of correlated seismicity as a function of source-449 

station separation in different magnitude ranges. The intent is to show how well 450 

correlation detectors might perform in a system where the nearest station may be 451 

several degrees from the source. 452 

 453 

Panel (a) shows the behavior when using all possible bands and phases. For events 454 

with M > 5, an astonishingly large fraction (~0.3 - 0.8) of events is correlated even at 455 

very large distances. Many of these are long-period surface wave correlations, and 456 

while they may not indicate the events are in close proximity, when detected at 457 

multiple stations the correlated arrivals can be used to perform very accurate 458 

relative locations (e.g. Cleveland and Ammon, 2013) and this could be used in 459 

pipeline processing. Events with M ≤ 4 only have significant correlation fractions at 460 

distances < ~10 degrees. However, for events in the range 4 < M ≤ 5 and out to 461 

about 30 degrees, the correlation fraction varies from 10% to 20%. .  About 10% can 462 

be correlated to 70 degrees. 463 

 464 

Panel (b) shows the behavior using only short-period bands. The correlation 465 

fraction for large magnitude events averages 0.2 to 0.3 over a very large distance 466 

range. This is encouraging, but should be interpreted cautiously. Nearly all these 467 

correlations are for P in bands 1-2, 1-3, 2-4, and 1-5. Often these signals contain a 468 
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relatively short P-pulse followed by low-amplitude coda. For example, Figure 11 469 

shows 80s long seismograms recorded at station KK01 for a group of 15 events 470 

correlated in the 1-2 Hz band. The correlation windows used at KK01 were about 471 

35s long. Most of the similarity occurs within about the first 20 s. In such narrow-472 

band, short-window cases the correlation can provide excellent relative timing 473 

between these P phases but is unlikely to indicate the causative signals are very 474 

closely located to each other. More likely, they are separated by a few tens of km. 475 

(The bulletin locations indicate a maximum separation of about 70 km.) This level of 476 

resolution may still be useful for association, or relative location based on network 477 

results but is insufficient for assignment of location based on single-station 478 

correlation, for example. Over the remaining magnitude ranges in Figure 10 (b) the 479 

behavior is similar to that of (a): The correlation fraction is large at less than ten 480 

degrees, and only the magnitude 4-5 events have a significant correlation fraction at 481 

greater distances. 482 

 483 

Panel (c) shows the behavior in short-period bands and using a correlation 484 

threshold of 0.8. Such conditions might be required if the correlations are to be used 485 

to offload work from the associator by directly classifying new events. With these 486 

restrictions, a significant fraction of events that correlate can only be found at 487 

distances less than about 8 degrees. 488 

 489 

Utility of Correlation Detectors for Global Seismic Monitoring  490 
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Clearly, correlation detectors (and ESDs in general) can be expected to be useful for 491 

local to regional monitoring systems. This is, after all, the domain in which many 492 

successes have been reported, and is the distance range in which this study finds the 493 

greatest fraction of correlated waveforms. In addition, our results suggest that ESDs 494 

can play an important role in a global monitoring system as well. For example, the 495 

International Monitoring System (IMS) of the Comprehensive Nuclear-Test-Ban 496 

Treaty Organization (CTBTO) will have, when complete, 50 primary and 120 497 

auxiliary seismic monitoring stations (Brely, 2010). We estimated the fraction of 498 

continental seismicity at different distance ranges for both the primary network and 499 

for the augmented network using data from the LLNL combined bulletin (including 500 

events without waveforms). We selected a subset of events from our bulletin that 501 

were located within one of 32 seismic regions (Flynn et al., 1974) within continental 502 

areas or within an active seismic zone bordering a continent. Using this set of 503 

5,300,239 events we calculated distances to all IMS stations. The results are listed in 504 

Table 6. For the primary network alone, 84.3% of events are within 12⁰ of at least 505 

one station, and almost 50% are within 6⁰. For the full network, 99% of events are 506 

within 12⁰ and 92.5% are within 6⁰. Figure 12 shows the distribution graphically. In 507 

the figure, the small circles are each centered on an IMS station and have radii of 12 508 

degrees. Each panel shows the Earth’s seismicity color-coded according to distance 509 

from the nearest station. The top shows the situation when just the primary stations 510 

are used and the bottom shows the situation using both primary and auxiliary 511 

stations. This analysis does not take into account ambient noise levels and other 512 
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factors that may make a station less useful. But it does suggest that a very large 513 

fraction of the IMS stations may perform usefully in an ESD subsystem.  514 

 515 

The actual design of a full-scale ESD system for a large network such as the IMS 516 

would be a complex undertaking and is beyond the scope of this paper. However, 517 

there are certain characteristics that we believe such a system must possess. For 518 

monitoring applications, we think that although an ESD system can serve as a means 519 

for lowering the detection threshold at known test sites, the system should serve 520 

mainly to reduce the workload (particularly during times of high seismicity). In the 521 

monitoring mission, the events of real interest are those that might be from a test 522 

site or that have not been seen before and that have explosion-like characteristics. If 523 

the remaining events could be masked out somehow, more resources could be 524 

devoted to the events that matter. This is what we see as the principal role for an 525 

ESD system: to keep on hand a pattern for every event that has ever been processed, 526 

and to use those patterns to identify and screen repeat occurrences. This is a 527 

computationally challenging problem because it requires the correlation of 528 

terabytes to petabytes worth of templates against a real time stream. Fortunately, 529 

problems of this scale are being tackled in the commercial sector and commodity 530 

architectures e.g. Hadoop and Storm are being rapidly developed, and could likely 531 

be adapted for this problem. 532 

 533 

Discussion 534 
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In order to understand better the characteristics of global seismicity and evaluate 535 

the utility of seismic waveform correlation in automated event processing systems, 536 

we performed a very large scale global cross-correlation on a research database 537 

containing more than 300 million seismic waveforms.  To understand better the 538 

dependence of waveform correlation behavior on time-bandwidth characteristics 539 

we performed the correlations in multiple time windows and frequency bands. After 540 

eliminating problematic non-seismic signal waveforms, we created a database table 541 

with about 371 million correlated seismograms.  We are still examining these 542 

results in detail.  In this paper, we described the most general characteristics of the 543 

results: the time, frequency, distance, and magnitude relationships between the 544 

events that showed strong correlation. In particular we are motivated by the 545 

potential to use such waveform correlation characteristics in future automated 546 

processing systems, both to lower detection thresholds and reduce the workload of 547 

human analysts.   548 

 549 

A major potential application of seismic waveform correlation would be as part of 550 

empirical signal detectors (ESD) (e.g. correlation, subspace, matched-field, etc.). 551 

These are well known to be highly sensitive relative to power detectors.  In addition, 552 

because seismic sources only produce correlated signals if the sources are very 553 

similar in location and mechanism, ESDs can detect, locate, and identify a source 554 

using as little as one channel. Because of these advantages, ESDs have been 555 

considered as components in pipeline architectures. To date, however, there have 556 
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been no large-scale deployments. The barrier to deployment is high and includes the 557 

following factors: 558 

1. Existing pipeline architectures are very mature, and for the most part do 559 

their job very well without resort to correlation detection. Operators of these 560 

systems necessarily must be conservative about making major changes to 561 

these systems. 562 

2. Although correlation detectors have been shown to work well in a number of 563 

regions, heretofore, it is unknown how effective they would be on a global 564 

scale. 565 

3. Large-scale correlation processing is computationally expensive, and cannot 566 

work on the architectures currently used by pipeline operators. 567 

We did not address the first item, but here point out that the current monitoring 568 

architecture is decades old and will eventually need to be replaced. We suggest that 569 

any redesign of a pipeline processing system should keep ESD in mind.  570 

This paper primarily focused on the second question, global effectiveness. We found 571 

that about 14.5% of the events share at least one waveform correlation with another 572 

event (correlation coefficient >= 0.6). Within the geographic regions where our 573 

waveform holdings are complete or nearly complete, that fraction rose to nearly 574 

18%. Moreover, among the events for which we had one or more seismograms 575 

recorded at distances less than 12 degrees, the fraction of correlated events was 576 

much higher, often exceeding 50%. We find these results to be very encouraging, 577 

with respect to point 2, since nearly all (99%) of continental seismicity is within 12 578 

degrees of at least one IMS station. 579 
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Finally on the third point on computational expense, the landscape is changing very 580 

rapidly. During the course of this work, we became very aware of the computational 581 

complexity issues, and particularly of the impact of I/O on processing time. We 582 

ultimately re-implemented our correlation processor on the open-source Hadoop 583 

platform and found a nearly 20X speed improvement (Addair et al., 2014). The big-584 

data analytics ecosystem of which Hadoop is a part is evolving rapidly and many 585 

businesses are processing huge amounts of data in real time using these 586 

technologies. We think this will lead to a viable architecture for processing 587 

streaming seismic data using correlation in the next few years. 588 

 589 

Data and Resources 590 

Most of the location and magnitude estimates used in this study can be obtained 591 

from the International Seismic Centre (ISC) (http://www.isc.ac.uk).  Additional 592 

sources include the EDR catalog (http://earthquake.usgs.gov/regional/neic), the 593 

REB catalog prior to 2013 (http://www.pidc.org), the EHB catalog 594 

(ftp://ciei.colorado.edu/pub/user/engdahl/EHB), and the FINNE 595 

(http://www.seismo.helsinki.fi/bul/index.html), all of which are publicly available. 596 

Most of the waveform data were obtained through the Incorporated Research 597 

Institutes in Seismology (IRIS) Data Management Center (DMC) at www.iris.edu, the 598 

U.S. National Data Center (USNDC) at www.tt.aftac.gov, GEOSCOPE at 599 

geoscope.ipgp.jussieu.fr, IIEES at www.iiees.ac.ir, GEOFON at geofon.gfz-potsdam.de, 600 

and MEDNET at mednet.rm.ingv.it.  Other data were obtained directly from 601 

networks in Azerbaijan, Georgia, Israel, Jordan, Kazakhstan, Kuwait, Oman, Saudi 602 

http://www.isc.ac.uk/
http://earthquake.usgs.gov/regional/neic
http://www.pidc.org/
ftp://ciei.colorado.edu/pub/user/engdahl/EHB
http://www.seismo.helsinki.fi/bul/index.html
http://www.iris.edu/
http://www.tt.aftac.gov/
http://www.iiees.ac.ir/
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Arabia, Turkey, and United Arab Emirates.  The resources with URLs are accessed 603 

and loaded into our database by automated software, and were likely last accessed 604 

(prior to this study) around the beginning of May, 2013. 605 
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Tables 725 

Windows used for correlation processing 726 
PHASE NOMINAL WINDOW 

LENGTH (s) 
PRE-WIN 
SECONDS 

MIN ⁰ MAX ⁰ 
 

MAX DEPTH 

Lg 50 10 1.46 15 35 
P 30 5 0 90 700 
PcP 50 5 26 60 700 
Pg 30 10 0 1.5 35 
Pn 15 7 1.5 10 35 
S 30 10 0 90 700 
Sn 30 10 1.46 15 35 
Whole 2000 5 0 90 700 

Table 1 shows the phases for which correlations could be computed. In order for the 727 
phase to be used at a specific event-station, the event had to fall within the depth 728 
range specified by (MIN DEPTH, MAX DEPTH) and the distance to the station had to 729 
be within (MIN DELTA, MAX DELTA). The window starting positions were 730 
calculated using AK135 and extended from PRE-WIN SECONDS before the predicted 731 
arrival for NOMINAL WIN LENGTH seconds. In a case where a window would 732 
extend into another predicted phase, the window was truncated at the predicted 733 
onset of the following phase. For the phase ‘Whole’ the nominal window length was 734 
calculated as MIN(nominal, DELTA (km) / 3). 735 
  736 
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Frequency bands used for correlation processing 737 

LOW CORNER (Hz) HIGH CORNER (Hz) 
0.025 0.05 
0.05 0.1 
0.1 0.2 
0.5 1 
1 2 
2 4 
4 8 
0.02 0.1 
0.5 5 
0.75 3 
1 3 
1 5 
2 6 
3 9 
4 16 

Table 2 shows the frequency bands for which correlations might be computed. The 738 
bands were chosen so that for any phase and distance there would be at least one 739 
band optimum for the signal. For each window pair to be processed only those 740 
bands supported by the seismogram sample rate and containing a minimum of 10 741 
cycles at the band center were used. 742 

 743 

  744 
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Features for all segments 745 

Feature Name Feature Description 

SNR Max of Signal to Noise ratios at P-arrival computed using 
both short and long windows 

Kurtosis Unbiased estimator of population excess Kurtosis 

T0 Time centroid of signal 

VART Time Variance 

VARF Frequency Variance 

TBP Time Bandwidth Product 

EXTR (mean – median) / range 

NGLITCH Number of single-point glitches 

DROPOUT_FRAC Number of discrete intervals in the trace with N or more 
consecutive samples having the same value. 

DROPOUT_IMP For the drop out fraction, the ratio between the  (dropout 
mean – signal mean) and the signal range. 

DISTINCT_VAL_RATIO The number of distinct values divided by the total values 
(This is inversely related to the quantization error.) 

NUM_DISC Number of places where there was a sudden persistent 
change in the signal mean 

DISC_AVG_VALUE Average value of the discontinuities 

DISC_MAX_VALUE Max value of the discontinuities 

DISC_AVG_KURTOSIS 
Average kurtosis of the discontinuities 

DISC_MAX_KURTOSIS Max kurtosis of the discontinuities 

Table 3 lists the features that are computed for both raw and filtered segments. The 746 
first six features are statistical descriptions of the signal, while the remaining 747 
features are used to characterize certain artifacts. 748 
  749 
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Additional features for filtered segments 750 

Feature Name Feature Description 
Non_centrality This is essentially a T-statistic comparing the signal 

window center to the energy centroid 
Packet_end The time from the window start where 90% of the energy 

in the envelope has been seen 
Packet_centroid Time centroid of packet 
Packet_TBP Time Bandwidth of packet 
Packet_sigma Square root of the packet time variance 
Table 4 lists additional features computed only on filtered segments. 751 

  752 
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Recurrence Interval Statistics 753 

Magnitudes 
 

< 1 day 1 day – 1 week 1 week – 1 month 1 month – 1 year 1 – 10 year 10 – 20 year 

All Number 921435 2098473 3708529 13499236 25003447 4422321 
 

Percent 1.9% 4.2% 7.5% 27.2% 50.3% 8.9% 
 

Cumulative 1.9% 6.1% 13.6% 40.8% 91.1% 100% 
        

M ≤ 4 Number 708383 1872547 3498688 12924089 24075716 4374775 
 

Percent 1.5% 3.9% 7.4% 27.2% 50.7% 9.2% 
 

Cumulative 1.5% 5.4% 12.8% 40% 90.7% 99.9% 
        

M > 5.5 Number 15488 12484 10143 31123 78750 10081 
 

Percent 9.8% 7.9% 6.4% 19.6% 49.6% 6.3% 
 

Cumulative 9.8% 17.7% 24.1% 43.7% 93.3% 99.6% 

Table 5 lists recurrence interval statistics for all correlated event pairs found in this 754 
study. The table is divided into three sections. The top section labeled “All” contains 755 
the statistics for all event pairs without regard to event magnitude. The middle 756 
section contains the statistics for event pairs with average magnitude ≤ 4 and the 757 
bottom section contains statistics for event pair with average magnitude > 5.5. 758 

  759 
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IMS Station Coverage of Continental Seismicity 760 
  ⁰ ≤ 1 ⁰ ≤ 2 ⁰ ≤ 4 ⁰ ≤ 6 ⁰ ≤ 8 ⁰ ≤ 10 ⁰ ≤ 12 

Primary 6.2% 15% 35.9% 49.1% 63.1% 78.5% 84.3% 
All 16.9% 37.7% 78.8% 92.5% 98.1% 98.8% 99% 

Table 6 shows the fractions of continental seismicity within distance ranges from 1⁰ 761 
to 12⁰ of at least 1 IMS station. The row labeled “Primary” shows percentages when 762 
only primary network stations are considered, and the row labeled “All” shows 763 
percentages for the entire network. 764 

  765 
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Figures 766 

 767 

 768 

Figure 1 (a) shows the waveform completeness (number of events with waveforms 769 
per cell divided by the total number of events in the cell during the bounding epoch 770 
of the waveforms). Color is proportional to completeness with black lowest and 771 
white highest. Note that although the data set has global coverage, the completeness 772 
is highest in the Middle East, Eurasia, Fennoscandia, and Western North America. 773 
Panel (b) shows waveform segment counts by year and panel (c) shows the segment 774 
counts by year for waveform segments that eventually were found to correlate with 775 
another. 776 
 777 
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 778 

Figure 2 shows (schematically) the processing of an “island”.  The traversal strategy 779 
minimizes I/O and computations by requiring each waveform to be read only once 780 
and correlated only once with neighbors within 50 km. At each stage an R-tree is 781 
used to rapidly determine candidates. At the start, events 2-5 have been found to be 782 
within 50 km of (1). Waveforms for all five are loaded and (1) is processed against 783 
the others for all phases and bands. At this point, all data for (1) is removed from 784 
memory and the focus shifts to (2). Processing of the island continues until all 785 
events have been processed. 786 
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 787 

Figure 3 is a schematic illustration of the processing applied to a single channel for a 788 
pair of events observed by a single station. The graphic in the upper left shows the 789 
geometry of the station and events to be processed. The graphics labeled “Band 1” 790 
and “Band 2” show the seismogram pair filtered into two different bands, and 791 
indicate (schematically) the windows for which correlations will be computed. For 792 
each window pair, the cross correlation function is computed and the max and its 793 
associated shift are recorded in the database. This is indicated schematically in the 794 
lower part of the figure. 795 

 796 
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 797 
Figure 4 shows examples of common artifacts that correlate well and that were 798 
removed in a post-processing step. (a1) is an apparent calibration pulse. (a2) is a 799 
comb function due to some kind of electrical malfunction. (a3) is an unidentified 800 
artifact (perhaps sensor tilting?) that is surprisingly common on some STA-CHAN. 801 
(a4) is a step function probably due to an electrical malfunction. (b) is an example of 802 
an artifact caused by filtering a signal into a narrow band that contains noise and 803 
with the intended signal well outside the band. The top shows the raw traces with a 804 
high frequency seismogram riding on low frequency noise. After filtering into the 805 
band containing the noise, the intended signal is gone and only the narrow band 806 
noise is left. The filtered signal will correlate quite well, but the result has no 807 
seismological significance. 808 
  809 
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 810 
Figure 5 shows the overall distribution of correlations by phase (a) and by 811 
frequency band (b). In part (a) the labels on each “stick” indicate the phase and the 812 
average window length. For all windows except “Whole” the length was 813 
predetermined but subject to the constraint that the correlation window could not 814 
run into the next phase. The length of the “Whole” window was determined based 815 
on the source-receiver distance. Although this window could be as long as 2000s, 816 
because most of the retained correlations are for relatively short distances, the 817 
average length for this phase is only 82s. Part (b) shows the number of retained 818 
correlations as a function of filter band. The vast majority are in short-period bands.   819 



 

 42 

 820 



 

 43 

Figure 6 shows the correlation counts as a function of event-station separation for 821 
long period bands (a), mid period bands (b) and short period bands (c). At mid to 822 
long periods the dominant feature in the plots is a drop of about 3 orders of 823 
magnitude for distances greater than 8 to 10 degrees.  From that point out to about 824 
90 degrees the number of correlations stays relatively constant except for a bump 825 
between 35 and 51 degrees.  826 
 827 
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 828 
Figure 7 shows the magnitude differences (left) and the distribution of time 829 
separations (right) for correlated event pairs in our results. The data are divided 830 
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into four bins based on the average magnitude of each event pair. Panel (a) shows 831 
results for average Mw ≤ 2. Panel (b) shows results for 2 < Mw (avg) ≤ 4. Panel(c) 832 
shows results for 4 < Mw (avg) ≤ 6, and panel (d) shows results for 6 < Mw (avg) ≤ 8. 833 
  834 
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Figure 8 is a comparison of STA-CHAN waveform commonality on a year-by-year 837 
basis. Panel (a) uses 2010 as the reference year. It was produced by computing the 838 
intersection of the sets of waveform STA-CHAN each year with the set of waveform 839 
STA-CHAN in 2010. Note that until 1990 there are only tens of channels in common, 840 
but the number rises quite rapidly after 1990. Panel (b) was produced using 1977 as 841 
the reference year. It is scaled the same as (a) to show the relative size of the two 842 
data sets. Panel (b) also shows that only a few tens of STA-CHAN are common 843 
between the two data sets. 844 
 845 

 846 
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Figure 9 shows the geographic distribution of correlated events color-coded 847 
according to correlation fraction. The correlation fraction is defined as the number 848 
of events in a cell that correlate with at least one other event divided by the total 849 
number of bulletin events in the cell for the time period in which there are 850 
waveforms in the cell. Panel (a) shows the correlation fraction for all events. The 851 
dashed white line outlines the largest region in which our waveform holdings are at 852 
least 80% complete. Panel (b) shows the correlation fraction computed using only 853 
events >= Mw 5. Panel (c) shows the fraction of events for which we have 854 
waveforms for stations within five degrees of the epicenters. 855 
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Figure 10 shows the fraction of correlated seismicity as a function of source-station 857 
separation in different magnitude ranges. Panel (a) shows the fraction of Catalog 858 
Events with Correlations in All Bands for 6 Mw Ranges. Panel (b) shows the fraction 859 
of Catalog Events with Correlations in Short-period Bands for 6 Mw Ranges. Panel 860 
(c) shows the fraction of Catalog Events with High Correlations (C >= 0.8) in Short-861 
period Bands for 6 Mw Ranges. 862 
  863 
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 864 

 865 
Figure 11 shows 80s-long seismograms recorded at KK01 for 15 events found to be 866 
mutually correlated in the 1-2 Hz band at the >= 0.6 level (average correlation was 867 
0.75). The source-receiver separation was between 48 and 50 degrees, and the 868 
average correlation window length was ~35s. 869 
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 870 
 871 
Figure 12 is a map of seismicity from the LLNL combined bulletin color coded 872 
according to distance from the nearest IMS station or array. Colors range from black 873 
for distances greater than 50 degrees to white for distance = 0. The small-circles are 874 
of 12 degree radius and are centered on IMS stations or arrays. Based on previous 875 
results, this is the effective bounding distance at which a substantial fraction of 876 
correlated waveforms may be observed in high frequency bands. Panel (a) shows 877 
the IMS primary stations and panel (b) shows the results for all IMS stations and 878 
arrays. 879 
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